Multi-step approach to add value to corncob: Production of biomass-degrading enzymes, lignin and fermentable sugars.

نویسندگان

  • Michele Michelin
  • Héctor A Ruiz
  • Maria de Lourdes T M Polizeli
  • José A Teixeira
چکیده

This work presents an integrated and multi-step approach for the recovery and/or application of the lignocellulosic fractions from corncob in the production of high value added compounds as xylo-oligosaccharides, enzymes, fermentable sugars, and lignin in terms of biorefinery concept. For that, liquid hot water followed by enzymatic hydrolysis were used. Liquid hot water was performed using different residence times (10-50min) and holding temperature (180-200°C), corresponding to severities (log(R0)) of 3.36-4.64. The most severe conditions showed higher xylo-oligosaccharides extraction (maximum of 93%) into the hydrolysates and higher recovery of cellulose on pretreated solids (maximum of 65%). Subsequently, hydrolysates and solids were used in the production of xylanases and cellulases, respectively, as well as, pretreated solids were also subjected to enzymatic hydrolysis for the recovery of lignin and fermentable sugars from cellulose. Maximum glucose yield (100%) was achieved for solids pretreated at log(R0) of 4.42 and 5% solid loading.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran-water on lignin structure and dynamics†

The deconstruction of cellulose is an essential step in the production of ethanol from lignocellulosic biomass. However, the presence of lignin hinders this process. Recently, a novel cosolvent based biomass pretreatment method called CELF (Cosolvent Enhanced Lignocellulosic Fractionation) which employs tetrahydrofuran (THF) in a single phase mixture with water, was found to be highly effective...

متن کامل

The integration of dilute acid hydrolysis of xylan and fast pyrolysis of glucan to obtain fermentable sugars

BACKGROUND Fermentable sugars are important intermediates in the biological conversion of biomass. Hemicellulose and amorphous cellulose are easily hydrolyzed to fermentable sugars in dilute acid, whereas crystalline cellulose is more difficult to be hydrolyzed. Cellulose fast pyrolysis is an alternative method to liberate valuable fermentable sugars from biomass. The amount of levoglucosan gen...

متن کامل

Key Pretreatment Technologies on Cellulosic Ethanol Production

Conversion of lignocellulosic biomass to fuel ethanol involves pretreatments followed by enzyme-catalyzed hydrolysis to generate fermentable sugars. Efficient pretreatment method can significantly enhance hydrolysis of biomass and thus reduce ethanol production cost. Cellulosic plant materials are mainly composed of cellulose, hemicellulose and lignin, the cheapest source of fermentable sugars....

متن کامل

Plant genetic engineering to improve biomass characteristics for biofuels.

Currently, most ethanol produced in the United States is derived from maize kernel, at levels in excess of four billion gallons per year. Plant lignocellulosic biomass is renewable, cheap and globally available at 10-50 billion tons per year. At present, plant biomass is converted to fermentable sugars for the production of biofuels using pretreatment processes that disrupt the lignocellulose a...

متن کامل

Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach

BACKGROUND One of the main obstacles in lignocellulosic ethanol production is the necessity of pretreatment and fractionation of the biomass feedstocks to produce sufficiently pure fermentable carbohydrates. In addition, the by-products (hemicellulose and lignin fraction) are of low value, when compared to dried distillers grains (DDG), the main by-product of corn ethanol. Fast pyrolysis is an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioresource technology

دوره 247  شماره 

صفحات  -

تاریخ انتشار 2018